Видеодневник инноваций
Баннер
Новые возможности комплекса наблюдения и разведки серии Пластун

Зоркий "Пластун"
на военной службе

Авторизация

Логин:
Пароль:

Поиск

Ходкость, управляемость и движители
И.Г. ЗАХАРОВ - доктор технических наук, профессор, контр-адмирал,
В.В. ЕМЕЛЬЯНОВ - кандидат технических наук, капитан 1 ранга,
В.П. ЩЕГОЛИХИН - доктор технических наук, капитан 1 ранга,
В.В. ЧУМАКОВ - доктор медицинских наук, профессор, полковник медицинской службы
В понятие "ходкость корабля", как известно, вкладывается способность корабля осуществлять движение с максимальной скоростью хода при минимальных энергетических затратах. Применительно к подводным лодкам это понятие расширяется: их движение не должно сопровождаться интенсивным демаскирующим шумом, приводящим к потере их скрытности. За последние 50 лет в области ходкости ПЛ проводились исследования по обеспечению минимально возможного их сопротивления в основном режиме хода, достижению наиболее высоких пропульсивных характеристик ПЛ при ее движении в этом режиме, а также созданию конструкций гребных винтов, обладающих низким уровнем шумоизлучения. Интенсивному развитию исследовательских работ в области ходкости подводных лодок, начиная с начала 50-х годов, послужило широкое внедрение на них атомных энергетических установок.

Опыт натурных испытаний первой отечественной атомной подводной лодки убедительно показал, что прежние подходы к выбору наружных обводов лодок и их внешней архитектуре, расчетам их буксировочного сопротивления при движении в воде, изучению условий работы гребных винтов за корпусом корабля нуждались в серьезном пересмотре. Эти же испытания продемонстрировали перспективность применения на подводных лодках специальных малошумных гребных винтов. Были развернуты комплексные целенаправленные исследования, связанные с совершенствованием конструкции винтов. Задача обесшумливания гребных винтов решалась не только путем акустической оптимизации их геометрических элементов, но и за счет реализации других идей, улучшающих условия работы винтов за корпусом подводной лодки. Благодаря тесному сотрудничеству специалистов промышленности и ВМФ удалось добиться заметных успехов в разработке принципиально новых теоретических методов проектирования гребных винтов, в создании физико-математической модели их шумоизлучения, что, по существу, открыло новый раздел теории корабля. Были детально и последовательно исследованы все составляющие сопротивления подводной лодки при ее движении в воде, осуществлен поиск форм корпуса и определены главные размерения, обеспечивающие наилучшие пропульсивные качества и наиболее благоприятные условия для работы гребного винта за корпусом корабля.

Следует отметить, что в ходе выполнения этих работ предложена ювелирная "операция вписывания" лопастей малошумного гребного винта в ту неоднородность потока, которую формируют корпус подводной лодки и его выступающие части для придания ему в полной мере свойств "малошумности". В корне видоизменилась сама концепция проектирования гребных винтов для ПЛ. Корпусы подводных лодок приобрели хорошо обтекаемую форму, с них были убраны все детали, увеличивающие сопротивление при движении на глубине. Доля сопротивления турбулентного трения воды об обшивку корпуса ПЛ резко возросла и составила 65-70% от полного сопротивления, став определяющей.

В получении положительных результатов исследований в области ходкости подводных лодок большое значение имело развитие гидродинамической экспериментальной базы ЦНИИ им. академика А.Н. Крылова, а также создание современных измерительных средств, позволивших резко расширить номенклатуру выполняемых модельных измерений, повысить их точность и надежность. В результате исследований были найдены наиболее перспективные и реальные пути существенного снижения сопротивления движению в воде. Теоретические расчеты были подтверждены серией испытаний крупномасштабных моделей. Для проверки методов снижения сопротивления и для проведения гидродинамических и других исследований в натурных условиях, выясняющих степень влияния так называемого масштабного эффекта, было принято решение о строительстве специальной подводной лодки-лаборатории. На этой подводной лодке в 80-х годах были проведены эксперименты по совершенствованию гидродинамических характеристик за счет применения различных способов воздействия на так называемый пограничный слой. В натурных условиях было достигнуто снижение сопротивления трения на 30%, что в общем сопротивлении составляет около 25%.

Значительный вклад в исследование прикладных аспектов проблемы снижения гидродинамического сопротивления и разработку конструкторских решений внесли ученые Сибирского отделения Российской академии наук - сотрудники Института теплофизики. Иркутского института органической химии (ИрИОХ), Института гидродинамики.

Одной из важнейших вех в развитии исследований в рассматриваемой области теории корабля явилось создание в начале 70-х годов скоростной серийной атомной подводной лодки, на которой в значительной степени были реализованы все мероприятия по гидродинамической отработке обводов корпуса и геометрических элементов гребных винтов. На этой подводной лодке (проект 661) была достигнута максимальная скорость под водой (более 40 уз.), которая до сих пор не перекрыта за рубежом. Зафиксированные высокие значения пропульсивного коэффициента (80%) и критических скоростей подводной лодки (скоростей, при которых шум гребного винта еще не проявляется) оказались близкими к предельно достижимым и полностью совпали с прогнозируемыми, что свидетельствовало об обоснованности и надежности разработанных к тому времени расчетных методов.

Но уже тогда специалистам в области ходкости подводных лодок стало понятно, что в ближайшие годы на скрытных режимах движения их шумность будут определять шумы гребных винтов некавитационной природы, которые ранее маскировались другими источниками. Создание конструкций малошумных гребных винтов, обладающих низкими уровнями некавитационного шума, при сохранении уже достигнутых пропульсивных и кавитационных характеристик, явилось следующим циклом исследований в области ходкости подводных лодок и обесшумливания гребных винтов. Эти исследования продолжаются до сих пор. Достижения в области ходкости подводных лодок стали возможными благодаря работам Ю.В. Кривцова, которого заслуженно называют отцом отечественного глубоководного бассейна, А.Д. Перника - автора первой отечественной конструкции малошумных гребных винтов, а также И.А. Титова - первопроходца в области ходкости подводных лодок в ее современном понимании и многих других сотрудников ЦНИИ им. академика А.Н. Крылова, 1-го ЦНИИ МО и ВВМИОЛУ им. Ф.Э. Дзержинского (В.Ф. Бавип, Б.А. Самарин, А.С. Горшков, О.Н. Гончаров, Б.А. Бискуп, С.В. Куликов, В.П. Ильин, Б.Г. Тощев, И.А. Воров, А.Н. Патрашев, В.Ф. Дробленков, В.Н. Герасимов, Ю.С. Шалин, И.И. Сизов).

Как известно, традиционный гребной винт как тип движителя в большинстве случаев применяется на водоизмещающих надводных кораблях.

Основным требованием, предъявляемым к гребным винтам надводных кораблей послевоенной постройки, было обеспечение наилучших пропульсивных качеств, позволяющих максимально повысить их скорость и дальность плавания. Как правило, это были трехлопастные гребные винты.

Начиная с середины 60-х годов в качестве движителей надводных кораблей стали применяться так называемые "малошумные" гребные винты, в конструкции которых реализуются некоторые идеи, направленные на задержку момента возникновения кавитации с увеличением частоты вращения. Винты были четырехлопастными. Поскольку возникновение кавитации определяется не только конструкцией гребных винтов, но и условиями их работы, в частности, неоднородностью поля скоростей натекающего потока, то одновременно реализовывались предложения по выравниванию натекающего потока. Все это позволило на 30-40% повысить докавитационные скорости и соответственно снизить уровни шума на закритических ходах.

В 70-е годы продолжалось строительство серийных кораблей с малошумными гребными винтами первого поколения. Однако в интересах повышения эффективности новых мощных гидроакустических комплексов потребовался дополнительный прогресс в обесшумливании корабельных движителей.

К концу 70-х годов был сформулирован облик малошумных корабельных винтов второго поколения. Серийные надводные корабли оборудуются преимущественно пятилопастными гребными винтами с умеренной саблевидностью. В ряде проектов применяются подвод воздуха к входящим кромкам лопастей и выравнивающие устройства.

Эти меры позволили увеличить докавитационные скорости на 35-45% при снижении уровней подводного шума на закритических ходах на 10-15 Дб. Одновременно в 2-2,5 раза снизились амплитуды периодических сил, передаваемых гребными винтами корпусу.

Несмотря на достигнутый прогресс в обесшумливании корабельных движителей, проблема дальнейшего улучшения гидроакустических качеств продолжает оставаться. Стало очевидным, что для ее решения необходимо совершенствование как теоретических, так и экспериментальных исследований. К настоящему времени практически все резервы пропульсивных и гидроакустических качеств кораблей в условиях применения обычных гребных винтов в значительной мере исчерпаны. Поэтому актуальной задачей стала разработка таких конструкций винтов, которые обладают повышенными гидроакустическими качествами не только в идеализированных условиях сдаточных испытаний кораблей, но и в реальных условиях эксплуатации с учетом влияния волнения, ухудшения состояния поверхности обшивки корпуса, маневрирования и т.д. Данная проблема может быть решена путем применения винтов регулируемого шага. Предпосылки для этого на отечественных быстроходных водоизмещающих надводных кораблях созданы за счет разработки силовых установок со сниженной номинальной частотой вращения.

Для обеспечения нового прорыва в улучшении пропульсивных и гидроакустических качеств надводных кораблей предпочтительно применение движителей новых типов, например, соосных гребных винтов противоположного вращения. Большой вклад в создание современной теории ходкости и движителей надводных кораблей, в строительство современной экспериментальной базы и проведение натурных испытаний внесли специалисты ЦНИИ им. академика А.Н. Крылова, 1-го ЦНИИ МО, ЛКИ и проектных бюро: В.А. Миниович, А.М. Басин, И.А. Титов, С.В. Куликов, И.Д. Желтухин, В.К. Турбал, В.К. Иванов, И.Н. Сыркин, Л.С. Артюшков, А.Ш. Ачкинадзе, М.Н. Саморуков, Ю.С. Шалин и другие.

Читать далее

Оглавление

Непотопляемость и остойчивость
Мореходность
Ходкость, управляемость и движители
Динамика подводных лодок
О кораблях с динамическими принципами поддержания (КДПП)
Прочность и конструкционные материалы
Вибрация
Взрывостойкость
Конструктивная защита
Пожаробезопасность
Скрытность и защита кораблей по физическим полям
Обитаемость кораблей
Совершенствование методов проектирования кораблей и обоснование проектных решений

Главное за неделю